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The influence of finite-amplitude perturbations on the unsteady vortex shedding 
past an impulsively started circular cylinder is investigated by means of a numerical 
model. The computational scheme is a mixed spectral-finite analytic technique, in 
which the fast-Fourier-transform algorithm is used for the evaluation of the 
nonlinear terms in the two-dimensional time-dependent Navier-Stokes equations in 
their stream function-vorticity transport form (the Helmholtz formulation) at  Re = 
1000. The vortex shedding is promoted by imposing at  t = 0 a small rotational field 
to the initially irrotational flow. Attention is focused on the strength of the 
perturbation vortex, which affects the way in which the vortex shedding develops in 
time. The results of the simulations are presented by means of computer-generated 
drawings of absolute streamlines, relative streamlines and vorticity fields ; it appears 
that, when the strength of the initial perturbation assumes the minimum value that 
has been tested, the vortex shedding phenomenon develops in a way different from 
that resulting from other numerical experiments of the same kind. 

1. Introduction 
There has been a considerable number of theoretical studies on vortex shedding 

past a circular cylinder, and amongst them the works of Bairstow, Cave & Lang 
(1922, 1923), Thom (1932), Roshko (1953, 1954), Abernathy & Kronauer (1962), 
Smith (1979, 1981), Cowley (1983), Tamada, Miura & Miyagi (1983) and 
Triantafyllou, Triantafyllou & Chryssostomidis (1986), should be mentioned as 
relevant to the present study. 

At  the same time, numerical solutions started to appear, mainly based on finite- 
difference implicit schemes but also on finite-element and boundary-element 
methods, and related to both steady and unsteady flows and symmetric and non- 
symmetric configurations of the wake. A list of such works is reported in table 1, 
together with the maximum value of the Reynolds number reached in the 
calculations. 

An analysis of the existing literature shows that there has been relatively little 
numerical research on the flow around a circular cylinder a t  Reynolds numbers 
higher than 500, the non-steady case has been investigated only for small time steps, 
the majority of the work has been done on symmetric flow, and poor analysis of the 
near-wake characteristics is provided. More recently, spectral numerical methods 
have started to appear, mainly due to both their accuracy and the increasing 
availability of supercomputers. Spectral analysis based on a Fourier series expansion 
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~ _ _ _ _ _  

Author@) Re (max.) Author(s) Re (max.) 
Steady flow Unsteady flow 

Thom (1933) 20 Payne (1958) 100 
Kawaguti (1953) 40 Kawaguti & Jain (1966) 100 
Allen 6 Southwell (1955) 1000 Ingham (1968) 100 
Apelt (1958) 44 Jain & Sankara Rao (1969) 200 

Takami & Keller (1969) 60 Jordan & Fromm (1972) lo00 
Tuann & Olson (1978) 100 Wu & Thompson (1973) 120 

Jackson (1987) 50 W n ,  Pepper & Lee (1976) 200 
Ta Phuoc LOC (1980) 1000 
Ecer, Rout & Ward (1983) 
Ta Phuoc LOC & Bouard (1985) 
Braza, Chassaing & Ha Minh (1986) 
Eaton (1987) 110 

Keller 6 Takami (1966) 15 Son & Hanratty ( 1  969) 500 
Hamielec & Real (1969) 500 Thoman & Szewczyk (1969) 300 000 

Fornberg (1980) 300 Okajima, Takata & Asanuma (1975) 6100 
Ingham (1983) 20 Panikker & Lavan (1975) 500 

200 
9500 
lo00 

TABLE 1. Some of the existing literature on non-spectral numerical investigations of vortex 
shedding past cylinders 

has already been used by Giorgini & Travis (1969), Travis & Giorgini (1971) and 
Orszag (1971), and in relation to the flow around a circular cylinder by Underwood 
(1969), Dennis & Chang (1970), Collins & Dennis (1973), Nieuwstadt & Keller (1973), 
Pate1 (1976), Giorgini & Rinaldo (1982), Ece, Walker & Doligalski (1984), Badr & 
Dennis (1985), Pravia & Giorgini (1985), and Avci & Giorgini (1985). 

The present study deals with the numerical simulation of the non-symmetric non- 
steady flow of a viscous incompressible fluid past a circular cylinder at Reynolds 
number 1000 (based on the cylinder diameter), in which this kind of technique is 
used. The numerical laboratory used in this study, developed by Giorgini, Rinaldo 
and Pravia, is based on a mixed spectral-finite analytic numerical scheme (Giorgini 
& Rinaldo 1982 and Pravia & Giorgini 1985) whose main feature is the Fourier series 
expansion of the fields in the azimuthal direction which, for computational purposes, 
is approximated by the discrete Fourier transform and is carried out by a vectorized 
fast-Fourier-transform algorithm. The calculations have been executed with the 
CDC-CYBER 205 supercomputer of the Purdue University Computing Center. The 
graphical representations of the flow fields have been generated by using proprietary 
graphical codes developed by Giorgini, Rinaldo and Pravia (figures 4, 8, 9, 10, 11). 
The time advancement is performed by means of both a fourth-order Runge-Kutta 
scheme and a fourth-order predictor-corrector algorithm, in which the Adam- 
Moulton formula is implemented ; fourth-order Newton-Cotes solutions are used 
in the radial direction. The main characteristics of the model are summarized in $52 
and 3. In order that the process of simulation behave in a non-symmetric fashion, an 
initial perturbation, consisting of a small rotational field, is introduced a t  the non- 
dimensional time t = 0.  The detailed description of the perturbation vortex is given 
in $4 and the results are reported and discussed in $95 and 6. 

This research was performed for two main reasons. (i) To investigate the influence 
of an initial perturbation on the vortex shedding past a circular cylinder. Then the 
fact that the nature of the corresponding physical phenomenon is derived frorz? the 

1 
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presence of perturbing instabilities, causing the asymmetric configuration of the 
wake past the cylinder. (ii) To obtain new insights into the fundamental mechanisms 
governing the formation of the near wake, by monitoring over time the evolution of 
the calculated flow fields. Sections 2 and 3 are summaries of the unpublished report 
by Pravia & Giorgini (1985). 

2. Mathematical formulation (Pravia & Giorgini 1985) 
The governing equations for the time-dependent two-dimensional flow of a viscous 

incompressible fluid, with no body forces and constant properties (the momentum 
conservation equations or Navier-Stokes equations), and the continuity equation, 
together with the definitions of stream function $ and vorticity c, are considered. By 
eliminating the pressure and substituting the aforementioned definitions, one obtains 
the elliptic Poisson equation 

V2$ = 5 (1) 

and the vorticity transport equation 

in which the following non-dimensional groups have been introduced : 

R is the cylinder radius, U is the free-stream velocity and 5 the kinematic viscosity. 
The polar coordinate system is introduced, yielding 

while (1) is formally not affected, except that 

The boundary conditions are no slip a t  the wall and free-stream velocity at infinity. 
The coordinate system is then modified by substituting the radial elongation 
with its logarithm (see also Son & Hanratty 1969; Dennis & Chang 1970; Fornberg 
1980, among others). By also transforming the previous equations into a perturbed 
form, representing the difference between the actual flow and the uniform one 
(formally $ = II. + e* sin e), the Navier-Stokes equations become 
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and the boundary conditions become 
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whereas the vorticity is unaffected. The fields are expanded in Fourier series along 
the azimuthal coordinate, as 

m 

$(6> 894 = c @,(t, t )  eiKO, (7) 
K--m 

By performing the appropriate substitutions, for any wave number K ,  the following 
expressions are obtained : 

@: - K ~ $ ,  = - e25&, 

with boundary conditions $1(0) = $;(o) = 3, 
$-1(0) = ypI(O) = -ii, 

$,(O) = $:(O) = 0 for K~ $: 1, 

$,(a) = $:(co) = 0 for K~ + 1. 

Equation (10) is solved by using the method of variation of coefficients (Hamidi & 
Giorgini 1985) 

@At) = e""+B,(O e-"[? (15) 

where A:(() eK5 +B:(t)  ePKf = 0 (16) 

e(2-r)s&(s) ds+ii&,,, (17) 

(18) 

2 K  
and 

As a result, the following integral conditions (first introduced by Dennis & Chang 
1970) must be satisfied: 

e(2-K)SlJs)ds = 0 for K =+ 1, (19) 

e(z+K)s&Js) ds = i for K = 1. (20) 

The truncation of the infinite series of Fourier coefficients arising from the 
discretization of the space variable in the azimuthal direction is accomplished by 
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approximating the Fourier series with the discrete Fourier transform, which can be 
calculated by means of the fast-Fourier-transform algorithm (Cooley & Tukey 1965 ; 
Giorgini 1968) for the evaluation of the convolutions arising from the convective 
terms of the governing equations. The time advancement (except at  the wall) is 
performed by two methods. A t  the initial four iterations a fourth-order Runge-Kutta 
solution is used ; starting at  the fifth iteration, a fourth-order predictor-corrector 
method is implemented, using the four values of the vorticity and of its time 
derivatives already calculated. In this case the Adam-Moulton. formula is used, with 
coefficients taken from Crane & Klopfenstein (1965); the use of the predictor- 
corrector formula brings a remarkable saving in computer time (order of 60%), 
without consequences for the accuracy of the calculations. The time advancement of 
the vorticity field at the wall is obtained by enforcing (19) and (20) at the projected 
instant. Once the vorticity Fourier coefficients are obtained for each time step, the 
spatial derivatives are calculated by using fourth-order Newton-Cotes formulae. 
Skewed backward finite-difference schemes are used at  the boundary points. Further 
information about the computer model can be found in Rinaldo & Giorgini (1984). 

3. Reliability of the model (Pravia & Giorgini 1985) 
To correctly portray the phenomenon to be simulated, the mesh size must be 

smaller than the spatial variation of the fields; the number of Fourier modes is an 
indicator of the refinement along the azimuthal coordinate, while in the radial 
direction the criterion used has been the one of keeping 

A< < $13. = $(Re*)-', (21) 

where 6* is the non-dimensional Hiemenz solution for the boundary-layer thickness 
at  the upstream stagnation point of a circular cylinder and Re* is the Reynolds 
number based on the cylinder radius. While the upper-bound value of A t  affects the 
correct representation of the phenomenon, the corresponding upper bound of At 
affects the stability of the calculations. Roache (1976) found that a stable relation 

At2 
2Y 

between A< and At is in the form 
At = -, 

which has been found valid for values of ( l /y)  < 41.5; accordingly, the criterion 

At c 2OAt2 (23) 

has been chosen which has been found to be stable for a Reynolds-number range of 
20 to 50000 and a Fourier-series cutoff range of 16 to 256. Throughout the numerical 
experiments, the radial grid size was x/64 and the non-dimensional time increment 
was varied between 0.025 and 0.005. 

In dealing with an unsteady flow, the perturbation caused by the presence of the 
cylinder propagates radially from its surface, and accordingly the number of radial 
stations must be increased in time ; this creates the need to determine whether the 
results of the calculations arc inaccurate owing to the effect of the outer boundary 
and/or to observe early indications of numerical instabilities in the system. These 
purposes are accomplished by monitoring - at each time step of integration - the 
behaviour of two graphs. The first is a plot of the enstrophy function, on a 
logarithmic scale, against the radial position, on an arithmetic scale. The values of 

(24) a =!(El = c Q ( E )  c m  
K 
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(b) 
1 op 

1 O0 

1 oo 
P 

10-0 

10-4 

t 1 

K 

FIGURE 1.  Typical diagnostic graphs. 

O f = 6  - , Numerical results 

FIGURE 2. Comparison between experimental results due to Bouard & Coutanceau (1980) and 
numerical results obtained with the present model for the shape of the bubble wake (Re = 3000) 
(from Pravia & Giorgini 1985). 

are calculated and plotted for each radial position (figure l a ) .  The upper curve 
represents the values just described, while the lower is the maximum single-mode 
value of 01 encountered for each radial position. The difference between the two 
,curves represents the enstrophy stored in the rest of the modes, for each position 6;  
the closer the curves are, the more reliable are the results. The criterion to determine 
the need for additional radial positions is the following : whenever the enstrophy at 
the outer boundary is of the order of lop6, the number of radial stations is increased 
(increments of 8 are used). Nigure 1 ( b )  is a plot ofthe logarithm of the enstrophy with 
respect to the modes 

P = f ( K )  = z CA) CCO ; (25) 
5 

here, too, the upper curve represents the sum of all the enstrophy in each mode along 
the radius, while the lower is the maximum single-station enstrophy for a given 
mode. It is expected that the enstrophy will decrease exponentially along the modes ; 
in the graph the function should behave linearly. The criterion for increasing the 
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FIGURE 3. Comparison between experimental results due to Bouard & Coutanceau (1980) (A) and 
numerical results obtained with the present model (-) (Re = 3000), for the radial component of 
the velocity at 0 = 0; (a )  t = 1, (b)  t = 2, (c) t = 3, (d) t = 4, (e) t = 5, (f) t = 6 (from Pravia & 
Giorgini 1985). 

number of modes has been established as follows: whenever the highest modes are 
four orders of magnitude less than the first one, then the number of modes is doubled. 
Accordingly, the number for the Fourier series cutoff has been varied from 16 to 64. 
The number of radial positions has been varied from 20 to 92. 

The aim of this work is to give new insights into both the characteristics of the near 
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FIQURE 4. Comparison between flow visualizations of secondary vortices at the cylinder wall due 
t o  M. Coutanceau (1985, private communication) (top) and streamline representations obtained 
with the present model (Re = 3000) (bottom); (a) t = 4, ( b )  t = 5. 

wake and the effect of a change of the initial conditions for non-steady non- 
symmetric flow past a circular cylinder, by performing numerical simulations with 
the mathematical model described above. This technique is referred in the literature 
as a numerical experiment in fluid mechanics (Aref 1986) and becomes of particular 
relevance in cases that are not easy to investigate with experimental techniques. In  
order to test the accuracy of the model against other results, some comparisons have 
been performed by the authors of the model ; in figures 2 and 3 (a-f) experimental 
results obtained by Bouard & Coutanceau (1980) for the shape of the wake and 
related radial velocities a t  different instants a t  Re = 3000, are compared with 
numerical results obtained with this model. In  figures 4(a) and 4(b) photographs of 
flow visualizations a t  Re = 3000 (M. Coutanceau 1985, private communication) are 
compared with streamlines of secondary vortices obtained with this model. In figures 
5 (a) ,  5 ( b )  and 5 (c) comparisons between numerical results due to Braza et al. (1986) 
for the distribution of vorticity a t  the wall a t  different instants for non-steady non- 
symmetric flow past a circular cylinder at Re = 1000 are compared with the present 
work. The differences noticeable in the lower parts of the graphs at  t = 2 and t = 3 
are a consequence of the different nature of the perturbations used in the two works. 
Other comparisons concerning the length of the bubble wake, the evolution of the 
separation angles, steady-state vorticity and pressure distribution at the wall have 
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FIGURE 5. Comparison between numerical results due to Braza et al. (1986) (----) and the present 
work (-) for the distribution of vorticity at the cylinder wall (Re = 1000); ( a )  t = 1, ( b )  t = 2, 
(c) t = 3. 
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Experiment P n CT (%Imsx 
o.e/to 0.2 02/56 10 217 0.008 
0.4/10 0.4 0.4156 10 217 0.015 
0.8/10 0.8 03/56 10 217 0.031 
1.6110 1.6 1.6156 10 217 0.062 

TABLE 2. Parameters characterizing the perturbation vortices 

already been shown in a previous paper (Rinaldo & Giorgini 1984), where this model 
was first presented. 

4. The perturbation vortex 
Several ways have been devised in different numerical studies to perturb the flow 

fields in order to simulate the non-symmetric configuration of the wake downstream 
of a cylinder. In some of them the cylinder translates and rotates simultaneously 
(Ece et al. 1984; Badr & Dennis 198.5), while in others the cylindrical body initially 
rotates (Jordan & Fromm 1972; Braza et al. 1986). In this study thc initial 
perturbation is a small rotational field, imposed at the non-dimensional time t = 0 to 
the initially irrotational flow. By assuming the following two-parameter mathe- 
matical formulation for the function representing the azimuthal vclocity : 

and consid-ring an expression with the meaning of an angular momentum, one 
obtains 

C 
(n - 2) (n - 3) ’ 

the quantity C/(n-2) (n-3) becomes a measure of the strength of the perturbation 
vortex. Another attribute of the perturbation function is its spread, which can be 
defined as the distance from the cylinder wall where all the discharge should be 
placed in order to have the same moment ; by considering the following expression : 

D 1; v,dr = 1; rv,dr 

one obtains the distance from the cylinder wall as 

where D is the distance from the centre in units of the cylinder radius. In  order to 
devise a range of variation for the two parameters C and n for different numerical 
experiments the following procedure has been followed : by choosing a value of n (n 
= lo), the corresponding value of c-r is determined. By also choosing a set of values 
of C (0.2,0.4, 0.8, 1.6, each one double the previous one) the corresponding values of 
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I 

FIQURE 6. The perturbation vortex. 

S are determined. In  this way a group of four perturbations with constant spread and 
increasing strength (each value is the double of the previous one) is identified. The 
values of the parameters C and n characterizing the numerical simulations with 
respect to the perturbation, are reported in table 2. Also, in this table the values of 
the function 

are reported in terms of C. It can be noticed that reaches at most 6.2 O h  of the 
free-stream velocity, in the experiment characterized by the highest perturbation 
strength. 

Figure 6 shows a qualitative representation of the perturbation vortex. 

5. Numerical experiments 
The numerical experiments will be identified by the kind of perturbation imposed 

a t  t = 0, which will be indicated by the two numbers representing the values of the 
parameters C and n in their mathematical formulation (table 2) ;  the results of the 
simulations are illustrated by three different flow-field representations : absolute 
streamlines, relative streamlines (relative to an observer travelling with the cylinder) 
and vorticity field. For both the absolute and relative streamlines, the interstreamline 
interval is 0.1 and the thick line has the stream-function value $ = 0; in the absolute 
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FIGURE 7.  The system of coordinates. 

t N K At t N K At 

1 20 16 0.0250 11-12 52 64 0.0080 
2 28 16 0.0250 13-16 60 64 0.0080 
3 28 32 0.0250 17-22 68 64 0.0080 
4 36 32 0.0250 23-28 76 64 0.0080 
5 36 64 0.0125 29-35 84 64 0.0080 

6-9 44 64 0.0125 36-40 92 64 0.0050 
10 52 64 0.0125 

TABLE 3. Computational parameters 

streamlines, the lines containing saddle points are also thick. The vorticity threshold 
between the black areas and the rest of the field is (2Re)4/20. The vortices have been 
numbered according to the order in which they detach from the cylinder and given 
a letter, U (upper) or L (lower), depending on whether the vortex has formed in the 
upper or in the lower part of the field, with respect to the x-axis (figure 7). The 
experiments have been conducted with the values of radial position N ,  Fourier mode 
K and At shown in table 3 (see also Alfonsi 1988; Alfonsi & Giorgini 1987). 

5.1. Experiment 0.2/10 
By t = 16 (figure 8a)  the asymmetry in the flow field is already evident; vortex U, 
is an a-vortex while vortex L, is a D vortex. (The terms a-vortex and D-vortex have 
the following meaning : free or detached vortices are encircled by a streamline that 
intersects itself, creating A figure which resembles the lower-case Greek letter a; 
attached vortices are entirely encircled by the wall and by a streamline which starts 
a t  a point of the wall and ends at another point of the wall, creating a figure which 
resembles the upper case Latin letter D.) According to the absolute streamlines, 
vortex U, starts moving away from the cylinder wall and this process is clearly 
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visible until t = 22 (figure 8 b ) ;  then it moves backward and by t = 26 (figure 8 c )  is 
attached again. During this ‘temporary detachment ’, vortex L, starts growing 
markedly, and by t = 26 is detached and starts travelling downstream. At this 
instant, the U, vorticity area is considerably more elongated than the L,, which has 
assumed a rounded shape. At  t = 28 (figure 8 d )  the elongation of the U, vorticity area 
becomes more pronounced and by t = 30 it has lost its tail, which keeps moving 
(figure 8 e ) ;  vortex U, has broken into two parts as a consequence of the upward 
movement of vortex L, (relative streamlines). Its main part becomes rounded and 
this new shape is in good agreement with the picture given by the absolute 
streamlines, from which it can be seen that vortex U, has just detached and is also 
rounded. Although vortex L, looks already separated on the basis of the absolute 
streamlines, its vorticity area is still connected to the cylinder and will separate later, 
when an independent vorticity lump will form. By t = 32 (figure 8f) vortex L, is not 
visible anymore in the way it was familiar before, but a sudden change in the 
direction of the streamlines is noticeable, revealing the existence of a vorticity sheet, 
which keeps travelling downstream until a vorticity lump appears. A new vortex - 
L, - also becomes evident and vortex U, appears by t = 36 (figure 8 9 ) .  

5.2. Experiment 0.4/10 

In this case the first vortex to detach is in the upper part of the field (U,) and the 
second in the lower (L,) ; there is a tendency of the L, vorticity area to assume an 
elongated shape and, at  the same time, of the U, vorticity area to have a rounded 
one. The absolute streamlines show that by t = 16 (figure 9a) vortex L, is a D vortex 
(attached to the cylinder), and U, is detached and starts travelling downstream. By 
t = 20 (figure 9b) the U, vorticity area overcomes the L, one, which starts assuming 
a rounded shape ; this is related to the process of detachment of vortex U, (see the 
absolute streamlines) which determines the extent of the vorticity area in the region 
of its movement. This process is similar to that observed in the previous experiment 
(0.2/10) and called there temporary detachment, the only difference being that now 
vortex U, shows a permanent detachment. Vortex L, keeps growing, separates by 
t = 24 and starts travelling downstream (figure 9 c ) .  Its growth is also clearly visible 
in the relative streamlines and in the vorticity field, from which i t  can be noticed how 
the upward movement of the L, vorticity area contributes to the breakup of the U, 
vorticity area; by t = 28 both U, and L, have developed in independent vorticity 
lumps (figure 9 d )  while vortex U, has appeared and separates, according to the 
absolute streamlines. 

5.3. Experiment 0.8/ 10 
By t = 14 (figure 10a) vortex L, has just separated from the cylinder and vortex U,, 
attached to the cylinder, grows markedly ; during this temporary detachment phase 
the L, vorticity area is still elongated while the U, starts growing, according to what 
can be seen in the streamlines. By t = 16 (figure lob) vortex U, is detached from the 
cylinder and has reached remarkable dimensions ; vortex L, is attached and is smaller 
than in the previous instants. Vortex U, starts travelling downstream and its 
vorticity area grows; by t = 20 in the area already occupied by vortex U, in the 
absolute streamlines, only a sudden change in the direction of the-6rgamlines 
appears, while vortex L, has grown markedly. The vorticity field shows an 
elongation of U, and a tendency of L, to become rounded. The L, area starts pushing 
upward and contributes to the breakup of L, (relative streamlines). This phenomenon 
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Experiment S CT First detached vortex 

0.2/10 0.2156 217 Lower 
0.4110 0.4156 217 Upper 
0.8/10 0.8156 217 Upper 
1.6110 16/56 217 Uppe,r 
TABLE 4. First vortex to detach in each experiment 

Exp. 0.2110 L,, U, Downward 
Exp. 0.4/10 U, Upward 

L,, U,, L4 Downward 
Exp. 0.8/10 U,, L, Upward 

U% L4 Downward 
Exp. 1.6/10 U,, L,, U, Upward 

L4 Downward 
TABLE 5. Characteristics of the movement of the vorticity lumps 

develops through instants t = 22 (figure 1Oc) and t = 24 (when vortex U, appears, 
figure 10d)  and by t = 26 the U, vorticity area becomes independent. 

5.4. Experiment 1.6/ 10 

By t = 14 (figure l la)  .vortex L, is attached to  the cylinder, while vortex U, has 
grown and is almost separated; by t = 18 (figure 11 b)  the L, vorticity area is about to 
lose its tail, while its main body is still close to the cylinder wall. At t = 20 the process 
is completed (figure l l c ) ,  vortex L, has also separated (absolute streamlines), the L, 
vorticity area has assumed a rounded shape and starts moving upward. By t = 24 U, 
is an independent vorticity lump and the elongation of the U, vorticity area is 
breaking up L, with the appearance of vortex L, (figure l l d ,  also from the relative 
streamlines). 

6. Concluding remarks 
All the different representations of the flow fields provide information that is often 

complementary, in the sense that whenever one of them becomes obscure or 
insufficient, another one takes its place and provides continuity to the description. 

The onset of the development of the flow field is not the same for all the 
experiments with respect to the location (whether upper or lower) of the first vortex 
to  separate, which determines the subsequent order of detachment for all the other 
vortices (table 4). 

The strength of the initial perturbation influences the number of vortices observed 
at every instant that  has been calculated, and, as a consequence, the total number 
of vortices observed at the end of each experiment. All the experiments show two 
vortices until t = 21 and then their number increases a t  higher rate in the 
experiments with the largest perturbation strength. 

Another feature to be pointed out is the movement of the vorticity lumps once 

10.2 
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Area 

FIGURE 12. For caption see facing page. 

they have become independent (table 5). Some further calculations have shown that, 
as time elapses, there is a tendency for the lumps to stay on the centreline. Moreover, 
concerning the behaviour of the first lump-and, as a consequence, of all the 
subsequent ones - it can be seen that, whenever the first vortex to separate is a lower 
one, its vorticity lump moves downward (experiment 0.2/10), while when the first 
vortex is an upper one, its lump moves upward. 

In order to further investigate the evolution of the vorticity in the lumps, some 
additional graphs are reported ; they portray the absolute vorticity - the integral of 
the vorticity field over the area of each lump - versus the area of the lumps, for each 
vortex in all the experiments. For vortex 1 (figure 12a) the values are quite 
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FIGURE 12. Absolute vorticity versus area: (a) vortex 1 ,  ( b )  vortex 2, (c) vortex 3, (d )  vortex 4. 
0,  Experiment 0.2/10; 0 ,  0.4/10; 0, 0.8/10; +, 1.0/10. The number near each symbol is the 
non-dimensional time. 

distributed ; the highest values of absolute vorticity correspond to the largest vortex 
areas (experiment 0.2/10) and the lowest to the smallest areas (experiment 0.4/10). 
At the areas of 3.0 and 3.5 the absolute vorticity in experiment 1.6/10 is higher than 
for experiments 0.8/10 and 0.2/10. The equivalent graph for vortex 2 (figure 12b) 
shows some of the points grouped around the same values ; the absolute vorticity in 
experiments 0.4/10 and 03/10 is higher than in experiment 0.2/10, for values of the 
area of 4.5 and 5.0. Then the vorticities of experiments 0.2/10, 0.4/10 and 1.6/10 
become higher than those of 0.8/10 (area equal to 4.0) and finally the same values are 



288 G. Alfonsi and A .  Giorgini 

shown for experiments 03/10 and 1.6/10 a t  the area values 3.5 and 3.0. The points 
related to vortex 3 (figure 12c) are mainly concentrated in the small area values: 
several points are grouped around the areas 1.0 and 1.5. The absolute vorticities in 
experiment 0.8/10 are higher than in experiment 0.4/10 in the points towards the 
right. The points related to vortex 4 (figure 1 2 4  are mainly concentrated in the 
central region of the graph and several of them are grouped around the area 2.5. 

In $ 1  two reasons have been indicated for this study to be performed. The 
following conclusions can be drawn concerning the influence of the initial 
perturbation on the vortex shedding phenomenon. 

(i) The increase in strength of the initial perturbation acts in such a way as to 
allow the vortices to  detach earlier. As a consequence the number of vortices every 
instant and the total number of vortices observed a t  the end of each experiment are 
increased. 

(ii) The strength of the initial perturbation does not directly influence the 
movement of the independent vorticity lumps, which is more closely related to the 
first vortex that separates. 

(iii) The values of the total vorticity within the vorticity lumps are independent 
of the initial perturbation. 

(iv) The step increase of the perturbation amplitude (each new value is double the 
previous one) was sufficient to  generate four distinct experiments, each one with a 
different behaviour. 

(v) A slight change in the characteristics of the initial condition has caused the 
first numerical experiment to be different from the other three of a similar nature in 
that, in the last three experiments, the first vortex to separate was an upper one, 
while in the first, i t  was a lower one. 

New information has been obtained on the mechanisms governing the formation 
of the near wake, through the description of the temporal evolution of the computer- 
generated drawings of absolute streamlines, relative streamlines and vorticity fields. 

Concerning the physical interpretation of these results, it should be kept in mind 
that the study has been conducted in two dimensions, while it is well known that at 
Re = 1000 three-dimensional effects are present. On the other hand such an approach 
allows a particular feature to  be isolated - the effect of a change of the initial 
conditions -while in other similar numerical studies often only one value of the 
initial perturbation is tested. Moreover, the analysis has been limited to the primary 
vortices, despite of the fact that  the present model has also been able to predict 
secondary and tertiary vortex structures (Pravia & Giorgini 1985). 
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